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Abstract— Achieving reliable autonomous navigation during
nighttime remains a substantial obstacle in the field of robotics.
Although systems utilizing Light Detection and Ranging (Li-
DAR) and Radio Detection and Ranging (RADAR) enables
environmental perception regardless of lighting conditions, they
face significant challenges in environments with a high density
of agents due to their dependence on active emissions. Cameras
operating in the visible spectrum represent a quasi-passive
alternative, yet they see a substantial drop in efficiency in low-
light conditions, consequently hindering both scene perception
and path planning. Here, we introduce a novel end-to-end
navigation system, the ”Thermal Voyager”, which leverages
infrared thermal vision to achieve true passive perception in
autonomous entities. The system utilizes TrajNet to interpret
thermal visual inputs to produce desired trajectories and
employs a model predictive control strategy to determine the
optimal steering angles needed to actualize those trajectories.
We train the TrajNet utilizing a comprehensive video dataset
incorporating visible and thermal footages alongside Controller
Area Network (CAN) frames. We demonstrate that nighttime
navigation facilitated by Long-Wave Infrared (LWIR) thermal
cameras can rival the performance of daytime navigation
systems using RGB cameras. Our work paves the way for scene
perception and trajectory prediction empowered entirely by
passive thermal sensing technology, heralding a new era where
autonomous navigation is both feasible and reliable irrespective
of the time of day. We make our code and thermal trajectory
dataset public.

I. INTRODUCTION

Autonomous navigation in low-light and nighttime condi-
tions has long been a formidable challenge in the field of
robotics. As we continue to rely on autonomous agents for
an ever-expanding array of applications, from self-driving
cars to search and rescue missions, the need for reliable
navigation in adverse environments becomes increasingly
apparent. Traditional visible spectrum cameras, while ef-
fective during daylight hours, falter in low-light conditions,
often rendering autonomous systems incapable of safe and
effective operation. In contrast, thermal vision technology
offers a promising alternative, enabling autonomous agents
to navigate successfully in darkness.

While visible spectrum cameras rely on ambient light,
which diminishes after sunset, thermal vision operates on
the principle of detecting heat emissions, allowing it to
function effectively in complete darkness. This capability
is particularly vital in various scenarios, such as military
operations, emergency response missions, and autonomous
transportation, where operating conditions often extend into
the night. The LWIR regime is particularly useful for this
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Fig. 1: The Thermal Voyager Autonomous vehicle setup: We
mount our sensor stack onto a vehicle with drive-by-wire
functionality

task as the radiance of objects at room temperature peaks
in the 8-14µm range. The atmospheric transmission in this
wavelength band is also the highest, which mitigates the
effects of environmental disturbances on the signal in this
spectrum. As shown in Fig. 2, the RGB system’s visibility
is greatly limited by the ambient lighting and this causes a
great deal of uncertainty for downstream perception and path
planning systems. By harnessing thermal vision, autonomous
agents can maintain their navigational competence regardless
of lighting conditions, ensuring both safety and reliability.

LiDAR systems rely on laser pulses that can be obstructed
by fog, rain, or dust particles, rendering them less reliable in
adverse weather conditions. Similarly, RADAR can struggle
to detect objects with high levels of precision and detail,
leading to potential navigation errors. When multiple agents
perceive a scene simultaneously, active modalities such as
LiDAR and RADAR become fundamentally challenging due
to signal interference. In contrast, thermal vision provides
a fully passive approach for scalable perception. The con-
tinuous, real-time image of the environment without the
limitations posed by sporadic laser pulses or radio waves
also offers a more reliable means of nighttime navigation.

Research like [1], [2], [3], [4], [5], [6] which draw
inspiration from ViT [7] showcases the domain-agnostic
learning strengths of the transformer. To adapt these models
to new domains, we explore the significance of utilizing ther-
mal vision for autonomous navigation at night, highlighting



its advantages over visible spectrum cameras, LiDAR, and
RADAR systems, and how it can revolutionize autonomous
operations in environments where human visibility is reduced
to zero. We propose the first end-to-end thermal navigation
system which we evaluate in simulator and in the real world
on our vehicle shown in Fig. 1

II. RELATED WORK

HADAR. Recent advancements in heat-assisted detection
and rang ing (HADAR) [8] have demonstrated the potential
of thermal perception in autonomous vehicles. HADAR
presents an innovative platform by integrating the capabilities
of thermal imaging with the advanced algorithms of artifi-
cial intelligence. It enables users to see through the dense
darkness, delivering a visual clarity akin to broad daylight.
This consistent visibility regardless of ambient lighting con-
ditions revolutionizes various fields, from medical diagnosis
to remote sensing. Moreover, while most computer vision
systems are currently trained on visible image data, HADAR
provides the platform to adapt existing foundational models
[6], [9], [10] to the thermal vision domain.

Trajectory Prediction. End-to-End Learning for Self-
Driving Cars [11] marked a paradigm shift by using deep
neural networks to map raw pixels to steering commands.
ChauffeurNet [12] employed imitation learning with syn-
thesized data for trajectory prediction while MPPI: Model
Predictive Path Integral Control [13] focuses on Model
Predictive Control (MPC). All these works are limited by
their reliance on visible light imagery and hence degrade
in performance in low light conditions. Our TrajNet system
fills this gap by utilizing thermal imaging for consistent
performance regardless of lighting conditions. End-to-End
Training of Deep Visuomotor Policies [14] simplifies the
development process by learning sensory-motor mappings
directly from raw visual data. However, this approach re-
quires extensive data and computational resources and may
lack interpretability. Visual Semantic Planning using Deep
Successor Representations [15] employs imitation learning
and reinforcement learning for visual planning but is limited
by its reliance on a simulated physics engine, making it
less applicable in real-world, unpredictable environments.
Deep Visual Teach and Repeat on Path Networks [16] uses
a single image sequence for efficient decision-making but
is limited by its inability to handle complex steering and
lacks error correction. Learning to Navigate in Cities Without
a Map [17] uses Google Street View data for deep RL-
based navigation. While innovative, it is constrained by the
availability and quality of Street View data and doesn’t
address nighttime navigation challenges.

Thermal Perception. Thermal-Inertial Localization [18]
combines thermal imaging with inertial data for navigation in
smoke-filled environments but is limited to aerial robots and
relies on additional sensors. TrajNet offers a more versatile
solution suitable for both aerial and ground navigation.
RGB-T SLAM and Hand-held monocular SLAM in thermal-
infrared [19], [20] focus on mapping and localization by
integrating thermal and visible spectrum data but do not

delve into predictive capabilities, particularly in trajectory
determination. Practical Infrared Visual Odometry [21] ex-
plores the potential of infrared cameras in visual odometry
but lacks a comprehensive end-to-end solution for trajectory
prediction.

While existing studies have explored various aspects of
sensor-based navigation and thermal perception, TrajNet
distinguishes itself by integrating thermal vision into an end-
to-end solution tailored for reliable nighttime navigation.

III. PROPOSED WORK

A. Vehicle Setup
Thermal Camera. Thermal data acquisition was executed

employing a FLIR A325sc, a Long Wave Infrared (LWIR)
thermal camera equipped with an uncooled vanadium oxide
microbolometer detector. The camera’s specifications encom-
pass a resolution of 320 x 240 pixels, a detector pitch
measuring 25µm, a time constant of 12 ms, a focal length
of 18 mm, and an f-number of 1.3 with a horizontal FoV of
45o and a vertical FoV of 33.8o.

RGB Camera. The ZED 2 stereo camera from STEREO-
LABS was used as the RGB camera in the experiments. The
resolution of the camera is 4416 x 1242 pixels, 120o FOV,
and 2 microns pixel size.

Compute Platform. The compute platform used in our
experiments was an NVIDIA Jetson AGX Orin with 2048
CUDA cores, 64 tensor cores, 32 GB RAM with a 12-core
Arm® Cortex®-A78AE v8.2 64-bit CPU. Model training
was performed on an NVIDIA RTX A6000 GPU with 48GB
VRAM using PyTorch [23].

B. System architecture
The architecture of the proposed system, as delineated

in Fig. 5, amalgamates an end-to-end differentiable neural
network exclusively relying on visual input with MPC [24]
to transform designated trajectories into actuation commands.
Specifically, TrajNet ingests camera frames in either the
LWIR or the visible spectrum as its input modality. The
architecture employs a ResNet [9] or SWIN DPT backbone
[6], [10] for feature extraction, culminating in a feature
tensor. These features either regress into a trajectory tensor
or are employed to generate a one-hot encoded vector for
template trajectory selection.

Subsequently, the generated trajectory is input into MPC,
which optimizes a sequence of control inputs over an im-
mediate temporal horizon of approximately 1 second (cor-
responding to 50 discrete steps). The computational latency
for the entire pipeline, including both the neural network and
MPC, is approximately 50 ms. Control sequences are cached
and periodically transmitted to the low-level controller, with
a cache validity threshold of 70 ms. Exceeding this duration
triggers a disengagement protocol in the TrajNet, accompa-
nied by user notification.

C. Safety Considerations
Ensuring operational safety is paramount in the context

of autonomous vehicle development. Accordingly, a rigor-
ous Failure Modes and Effects Analysis (FMEA) has been



Fig. 2: Navigating in dark environments using RGB cameras can be challenging due to the lack of features. Thermal
perception provides a truly passive approach to perception.

Fig. 3: We train 6 different architectures for 15 epochs and have visualized the metrics and the learning rate through as the
model learns. The Cosine Similarity metric increases and the DTW Distance, MAE, MSE, and RMSE decrease through the
course of training. The learning rate reduces in stages and is governed by the ReduceLROnPlateau scheduler. We make
use of the Adam optimizer [22] with β set to (0.9, 0.999) and ϵ value of 10−8

conducted on all constituent subsystems. Based on this
analysis, the TrajNet operates under a set of predefined safety
constraints: (1) the engagement button is only enabled when
the vehicle is at a standstill with the driver’s foot on the
brake; (2) disengagement is triggered when the vehicle speed
exceeds 5 MPH or upon manual driver intervention involving
the throttle, brake, or steering systems; (3) auditory alerts
are triggered during transitions between engagement and
disengagement states; (4) TrajNet is restricted to a maxi-
mum of 20% throttle actuation; and (5) system shutdown
is ensured upon powering off the vehicle. This robust safety
framework facilitates rigorous exploration within the domain
of autonomous navigation under low-illumination conditions.

D. Data Augmentation

In order to increase the variety of scenes our model is
exposed to during training, we augment our dataset.

2D to 3D transformations. We make use of a function
to convert between an affine transform on the 2D camera
plane and the corresponding 3D affine transform in the world

coordinate system given by M2D ←→ M3D. Consider a
2D affine transform M2D and the intrinsic matrix K of the
camera. If we apply a 2D affine transformation M2D on the
image plane, it means we’re changing the 2D image coordi-
nates. The equivalent 3D transformation M3D corresponding
to the 2D affine transformation M2D on the image plane can
be obtained from Eq. (1). Here, K−1 represents the pseudo-
inverse of the matrix K.

M3D = K−1M2DK (1)

Inversion We can flip the image along the y-axis and the
trajectory along the y-axis to generate a new data point. We
set M2D as shown Eq. (2). Using Eq. (1), we can compute
the corresponding 3D affine transform to be as shown in
Eq. (2).

Mflip
2D =

1.0 0.0 0.0
0.0 −1.0 2cy
0.0 0.0 1.0

 ;Mflip
3D =

1 0 0
0 −1 0
0 0 1

 (2)
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Fig. 4: Visuals of TrajNet working on the validation set of our
dataset. The trajectory in green is the ground truth trajectory,
red is the model prediction and the yellow regions represent
the overlap. The two trajectories have a bright green and red
line running through them which indicates their center. It is
evident that the model’s performance on histogram equalized
LWIR tends to be better than raw LWIR

Random Skew We apply a random skew on the image
plane along the y-axis as defined by the 2D affine transform
M2D in Eq. (4). This skew is limited to be between -0.1
and 0.1. This skew’s effect is visually described in Fig. 6.
This matrix represents the 3D skew transformation in terms
of the given parameter warpy and the intrinsic parameters
fx, fy, cx, cy .

Mskew
2D =

1.0 warpy 0.0
0.0 1.0 0.0
0.0 0.0 1.0

 (3)

Mskew
3D =

1.0 warpy

cx×warpy−cx
fx

0.0 1.0 0.0
0.0 0.0 1.0

 (4)

E. Vehicle Model

ẋ = v cos(θ+β); ẏ = v sin(θ+β); θ̇ =
v cos(β) tan(δ)

L
(5)

We make use of the Bicycle Vehicle Model. The param-
eters of the model are as follows: (x, y) are the coordinates
of the center of gravity (CG) of the bicycle model, θ is the
heading angle, v is the velocity of the center of gravity of
the bicycle model, δ is the steering angle, L is the wheelbase
(distance between front and rear axle), Lr is the distance
from the CG to the rear axle, Lf is the distance from the
CG to the front axle, β = arctan

(
Lr·tan(δ)

L

)
is the slip angle

at the vehicle’s CG and the steering angle is δ. The dynamic
equations of the bicycle model are shown in Eq. (5). Here,

ẋ, ẏ, θ̇, and v̇ represent the time derivatives of x, y, θ, and
v, respectively.

F. Generating Trajectory Labels

We gather CAN data from the vehicle which includes
steering angle and wheel speed data per frame. This is gath-
ered at a frequency of about 30 Hz. Using the vehicle model
shown in Eq. (5), we can convert a set of N consecutive
timestamped frames containing steering angle and wheel
speed into a trajectory of N points. These generated trajec-
tory labels are grouped into sets of 3 seconds. These sets are
used to supervise our trajectory network. The trajectory is
visualized by projecting the trajectory onto the camera plane
using the camera intrinsic matrix as shown in Fig. 4 where
Smax represents the maximum allowed steering angle.

Algorithm 1: Reinforcement Learning Simulator
Input: Neural Network N ,

Image Frame F ∈ R1×C×H×W ,
Ground Truth Trajectory Tgt ∈ R250×2,
Maximum Distance dmax,
Maximum Iterations nmax,
Intrinsic Matrix K ∈ R3×3,
Distortion Coefficients D ∈ R5

Output: Loss L
L ← 0.0
dtravelled ← 0.0
iter count← 0
M3D ← I4
M2D ← I3

while dtravelled < dmax and iter count < nmax do
Tgt ←M3D[: 3, : 3]T

⊤
gt +M3D[: 3, 3]

F ′ ←WarpAffine2D(F,M2D)
Tpred ← N(F ′)
p3D ← Tpred[1]
dtravelled ← dtravelled + ∥p3D∥

Mnew
3D ←


1 0 0 p3D[0]
0 1 0 p3D[1]
0 0 1 p3D[2]
0 0 0 1


M3D ←M3D ×Mnew

3D
M2D ← Transform3Dto2D(M3D,K)
L ← L+ MSE(Tpred,Tgt)
iter count← iter count + 1

end
return L

G. Model Predictive Control

Once TrajNet produces a trajectory, we must then com-
pute the optimal steering angle to execute that trajectory.
We look into Model Predictive Control [25], [26], [24] and
use the Bicycle Model to optimize the cost function J(u)
as described in Eq. (6) where u = [u0, u1, . . . , uN−1] is
the sequence of control inputs, Xdes is the desired trajectory,
and K is the tuning parameter for the control input. The



Fig. 5: Autonomous vehicle architecture: Thermal/RGB image frames are fed into TrajNet which outputs a trajectory. The
Model Predictive Controller translated the trajectory to an optimal control sequence of actuator values. Low-level systems
command the actuators to then execute the desired trajectory

(a) Input image (b) Skewed image

Fig. 6: An example of the skew we use to augment our
dataset and use in our RL Simulator. Here, the skew is set
to 0.1

optimization and its bounds are described in Eq. (7). By
optimizing Eq. (7), we get the optimal control input sequence
u∗ that minimizes the difference between the trajectory com-
puted by the controller and the desired trajectory requested
by the model.

J(u) =
N−1∑
i=0

(
(x−Xx

des,i)
2 + (y −Xy

des,i)
2 +Ku2

i

)
(6)

min
u

J(u)

s.t. ui ∈ (−Smax, Smax) ∀i ∈ [0, N − 1]
(7)

H. Simulator

Although TrajNet correctly predicts the ground truth tra-
jectory, when taken into the real-world, the initial training
isn’t sufficient to teach it to stay on track and correct large
track deviations well. The real world noises that come from
factors such as wind, steering lag, small undulations on the
road causes deviations. The training data which consists of
human driving doesn’t necessarily teach the model to recover
from specific deviations. Hence, if the car deviates from
the expected trajectory, it does not predict a trajectory to
recover and thus continues to drift from the ideal trajectory.
To address this issue, we take inspiration from [28] and

introduce a simulator as described in Algo. 1 that uses the
M2D ←→ M3D transform described in Eq. (1) to mimic
the effects of driving. As the vehicle moves forward in the
simulator, we warp the image by the corresponding amount
to produce the illusion of movement. Fine-tuning the network
on this simulator shows improvement in the model’s ability
to recover from track deviations. We avoided conventional
simulators including AirSim [29] and Carla [30] due to their
limited support for thermal simulation at the time and went
with our custom simulator.

IV. EXPERIMENTS

We gather a training dataset consisting of about 45,000
frames where each frame consists of an Image and Trajectory
pair as shown in Fig. 4. This dataset was gathered in
an empty parking lot along a desired track. We trained a
total of 6 different architectures and experimented with three
backbones: ResNet50, ResNet101 [9] and DPTSWIN−2T

[6], [10]. We took 2 approaches: trajectory regression and
template selection. In trajectory regression, the features ex-
tracted from the backbone go through convolution and Fully
Connected layers to produce the trajectory. The regression
mode permits a large amount of flexibility in what the
model can predict, but it also means that the model could
output invalid trajectories (which cannot be executed with the
constraints of the vehicle model); and since every trajectory
can be different, we would need to run our MPC online and
adds latency. In the case of templates, the model produces a
one-hot encoding to select from a set of template trajectories.
The template approach removes the possibility of invalid
trajectories and reduces the time spent running MPC online
as all the possible trajectories are known and the correspond-
ing control sequence can be pre-computed. The inherent
limitation in employing a template-based methodology lies
in the model’s restricted ability to adapt and assimilate
novel trajectories. Attempting to instruct the model using an
extensive dataset of trajectories becomes ineffective as the
model cannot learn to discern minute distinctions among a
large number of trajectories. We first train our models on
the visible spectrum dataset as a baseline and then fine-tune
them to operate on the LWIR image space. We experiment



Method Dataset Hyperparameters Metrics

RM BS EP LR Cos Sim DTW Distance MAE MSE RMSE

TrajNetRR50

RGB R250×2 60 15 0.00001 0.9138 25.2496 0.0505 0.0105 0.0771
LWIR RAW R250×2 60 15 0.000001 0.6213 55.2040 0.1104 0.0188 0.1313
LWIR HEQL R250×2 60 15 0.000001 0.6597 53.8297 0.1077 0.0173 0.1265

TrajNetTR50

RGB T10 60 15 0.00001 0.8540 35.1748 0.0703 0.0160 0.1009
LWIR RAW T10 60 15 0.000001 0.8192 32.0589 0.0651 0.0072 0.0721
LWIR HEQL T10 60 15 0.000001 0.8890 30.0679 0.0612 0.0069 0.0712

TrajNetRR101

RGB R250×2 60 15 0.00001 0.9241 23.2562 0.0465 0.0098 0.0728
LWIR RAW R250×2 60 15 0.000001 0.9110 26.3298 0.0527 0.0062 0.0643
LWIR HEQL R250×2 60 15 0.000001 0.9141 26.5019 0.0530 0.0058 0.0646

TrajNetTR101

RGB T15 60 15 0.00001 0.8510 35.2925 0.0706 0.0160 0.1016
LWIR RAW T15 60 15 0.000001 0.8255 33.4171 0.0668 0.0110 0.0860
LWIR HEQL T15 60 15 0.000001 0.8992 30.0589 0.0601 0.0069 0.0701

TrajNetRDPT

RGB R250×2 30 15 0.00001 0.9426 18.7051 0.0374 0.0085 0.0621
LWIR RAW R250×2 30 15 0.000001 0.4079 63.8079 0.1276 0.0238 0.1482
LWIR HEQL R250×2 30 15 0.000001 0.8247 39.3470 0.0787 0.0109 0.0955

TrajNetTDPT

RGB T25 30 15 0.00001 0.8101 41.6146 0.0832 0.0197 0.1156
LWIR RAW T25 30 15 0.000001 0.7621 41.1822 0.0824 0.0217 0.1147
LWIR HEQL T25 30 15 0.000001 0.8001 41.9756 0.0877 0.0201 0.1238

TABLE I: Ablation Study We run hyper-parameter sweeps on six different architectures to find the find the best performing
models for each architecture. Models with superscript R and T use regression and template selection respectively. The
subscript in TN indicates that the model uses N trajectory templates. We sweep across Regression Method (RM), Batch
Size (BS), number of Epochs (EP) and Learning Rate (LR). We evaluate on Cosine Similarity, Dynamic Time Warping
(DTW) Distance [27], Mean Absolute Error (MAE), Mean Squared Error (MSE) and Root Mean Squared Error (RMSE).

with providing the raw LWIR input as well as the histogram
equalized LWIR input.

A. Ablation Study

We observe from Tab. I and Fig. 3 that the TrajNetRDPT

preforms the best overall. TrajNetRR101 seconds it in terms
of trajectory accuracy, but cannot operate in real-time.
TrajNetRR50 performed comparably to TrajNetRR101, while
being smaller and faster. Subsequent to these investigations,
it is observed that template-based networks exhibit a com-
paratively lower level of performance compared to regression
networks. However, the deficiency in accuracy is offset by
a notable improvement in computational speed, attributed to
the elimination of the downstream necessity for online MPC.
While we see promise in the application of the template
style architecture, we acknowledge the fact that the real
world can present our systems with a diverse set of scenarios
which the templates may not accommodate. We observe that
training the models on the histogram equalized thermal data
produces superior results when compared to training them on
the raw thermal signal. This intuitively makes sense because
the histogram equalization gives more contrast to the image
making it easier to perceive the track.

B. On Track Testing

Once the system was validated in the simulator and all the
in-vehicle safety checks were in place, we took the system to
the parking lot and drove it around in a loop. The system was
able to drive well during the daytime with visible spectrum
input, but the performance of these networks deteriorated at

later times of the day as the ambient lighting went down.
The thermal networks performed consistently regardless of
ambient lighting.

V. CONCLUSION

Our research introduced TrajNet, the first end-to-end
navigation system designed to utilize thermal cameras for
autonomous vehicle navigation in low-light and night-time
conditions. The study provides a comprehensive compari-
son between thermal LWIR cameras and traditional visible
spectrum sensors, demonstrating the advantages of thermal
imaging for passive perception agnostic to ambient lighting
in autonomous vehicles. Our results show that TrajNet, when
equipped with thermal cameras, exhibits robust performance
even in challenging lighting conditions, overcoming the
limitations of cameras operating in the visible spectrum. The
thermal cameras were able to provide a dense depiction of the
scene across the thermal spectrum, enabling more accurate
and stable trajectory predictions. We also introduced a novel
dataset comprising RGB, thermal (LWIR), and CAN frames.
This dataset proved to be invaluable for training TrajNet and
could serve as a foundation for future research in this do-
main. The promising results from our thermal camera-based
system suggest an alternative pathway for the development
of truly passive perception systems in autonomous vehicles
that work in all weather conditions.

ACKNOWLEDGMENT

We thank Fanglin Bao and Shree Hari Sureshbabu for the
fruitful discussions through the course of the project.



REFERENCES

[1] H. Bao, L. Dong, S. Piao, and F. Wei, “BEit: BERT pre-training
of image transformers,” in International Conference on Learning
Representations, 2022. [Online]. Available: https://openreview.net/
forum?id=p-BhZSz59o4

[2] B. Graham, A. El-Nouby, H. Touvron, P. Stock, A. Joulin, H. Jegou,
and M. Douze, “Levit: A vision transformer in convnet’s clothing
for faster inference,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), October 2021, pp. 12 259–
12 269.

[3] A. Jaegle, S. Borgeaud, J.-B. Alayrac, C. Doersch, C. Ionescu,
D. Ding, S. Koppula, A. Brock, E. Shelhamer, O. Hénaff, M. M.
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